características del río piura

This is a single blog caption
24 Sep

características del río piura

La temperatura media anual de la cuenca es de 24ºC en la zona baja y media y de 13ºC en la parte alta. (Km.) en el área costera, 148.19 y 236.41 mm. • Río Piura forma un abanico (cono) fluvial de área - 680 km 2 • yacente esta formado por: - formaciones Zapallal y Miramar de cuenca Sechura (Neogeno) 5.4.1.3.- CAUDALES MEDIOS ANUALES O MÓDULOS Se calculan tomando la media aritmética de los caudales correspondientes a los 12 meses del año; como consecuencia nos da una idea de la variación a nivel promedio de los caudales que se presentan en cada año. 65.08 0.53 1. Reemplazando el valor de D en la primera expresión resulta: S1 = LC * H (m/Km.) Se considera que la pendiente uniforme equivalente del cauce (S 3) indicada en la fórmula es la medida más lógica y simple. LA ALTITUD ALTITUD AREA 0 10295,01 0,00 100.00 200 3383,97 5,56 32.87 400 2650,97 11,11 25.75 600 2166,07 16,67 21.04 800 1808,83 22,22 17.57 1000 1532,93 27,78 14.89 1200 1258,05 33,33 12.22 1400 1037,74 38,89 10.08 1600 829,78 44,44 8.06 1800 658,88 50,00 6.40 2000 509,60 55,56 4.95 2200 387,09 61,11 3.76 2400 270,76 66,67 2.63 2600 186,34 72,22 1.81 2800 124,57 77,78 1.21 3000 74,12 83,33 0.72 3200 15,44 88,89 0.15 3400 2,06 94,44 0.02 3600 0,00 100,00 0.00 CURVA HIPSOMETRICA DE LA CUENCA DEL RIO PIURA 4000 3500 3000 2500 2000 ALTITUD (m.s.n.m.) La pendiente equivale al promedio de la parte intermedia del cauce (S 4) excluyendo el 15% superior y el 10% inferior de su longitud total. POLÍGONO DE FRECUENCIA DE ALTITUDES La curva hipsométrica puede ser bien complementada por el polígono o curva de frecuencias altimétricas que es la representación gráfica de la distribución ( Km2 y %) de las superficies ocupadas por diferentes altitudes. mediatrices formando así cada polígono que rodea una estación. : : : SET. En lugar de expresar el relieve a través de una curva o de un rectángulo, podemos definirlo mediante un determinado índice que sintetice la pendiente de la cuenca, facilitando de este modo la comparación entre estos. OCT. NOV. DIC. Está a solo 4 grados al sur del ecuador, pero recibe dos vientos oceánicos al mismo tiempo: el viento frío de Humboldt y el viento cálido de El Niño. ALTITUD MÁS FRECUENTES Es aquella con valor en porcentajes el mayor o el máximo de la curva de frecuencias altimétricas. PLANES DE CULTIVO La administración técnica del distrito de Riego Medio Bajo Piura 05; ha formulado el presente Plan de cultivo y riego con la finalidad de que el uso justificado y racional del recurso hídrico, sirvan para el desarrollo de todo este valle agrícola. II.- IMPORTANCIA La importancia del presente estudio se basa en los siguientes puntos: 1. Kc ═ Donde: P 2 Aπ (Adimensional) P = Perímetro de la cuenca (Km.) El río más importante de esta Subcuenca es el río Charanal, que nace en las alturas de Poclus con el nombre de la Quebrada Huaitaco, aguas abajo se denomina río San Jorge. 1,253.70 474.20 888.80 163.69 157.51 8.21 129.78 125,664.81 197,470.29 3,893.18 115,348.46 Piercas 1,340.80 27.80 37,274.24 Sto Domingo 898.60 122.51 110,087.49 Frías Sapillica 1,002.50 598.00 471.51 95.74 472.688.78 57,252.52 Tejedores 146.80 374.74 55,011.83 Tablazo 89.50 514.75 40,070.13 Curvan 233.50 1,399.10 326,689.85 Mallares 40.50 145.16 5,878.98 Miraflores 39.70 1,003.76 39,849.27 San Miguel 34.60 969.79 33,554.73 Bernal Chisis Paltashaco 27.17 23.50 607.50 715.50 439.60 719.62 19,440.14 10, 330.60 437,169.15 Virrey Huarmaca 138.70 874.70 1,074.80 225.45 149,074.76 197,201.12 Pirga 722.30 202.08 203,746.38 La esperanza 21.70 7.21 156.46 Arrendamientos 547.10 12.35 6,756.69 10,295.01 3' 299, 026.28 Promedio 520.7 mm. Km2. Características del Río piura Recibe ahora mismo las respuestas que necesitas! Cuando la divisoria va disminuyendo de altitud, debe cortar a las curvas de nivel en su parte cóncava. MEDIO Y BAJO PIURA. en las inmediaciones del cerro Parathón, inicialmente toma el nombre de quebrada de Parathón hasta unirse con la quebrada Cashapite, para dar origen a la quebrada Chalpa, que al unirse con la llamada Overal, dan origen al río Huarmaca. SX =Pendiente de la cuenca en la dirección x. SY =Pendiente de la cuenca en la dirección y. Horton considera que la pendiente media de la cuenca puede determinarse como: Sc = N * D * Secθ L Donde: N = NX + NY L = LX + LY θ = Angulo entre las líneas de la malla y las curvas de nivel. San Francisco.- Nace en el río Quebrada Honda a 450 m.s.n.m. Para el cómputo de θ de cada intersección Horton sugiere usar un valor promedio de Sec θ = 1.57. FUENTES DAS PERÚ. echeandiachilcan echeandiachilcan 01.10.2022 Ciencias Sociales Universidad contestada Características del Río piura 1 Ver respuesta Publicidad . La expresión es la siguiente: F= Donde: A L² A = Área. Fuente:www.mem.gob.pe/wmen/mapas/aa/cuencas.htm D.1 Cuencas Hidrográficas del 1050 CAPLINA 2304 YAVARI Pacífico D.2 Cuencas Hidrográficas del AMAZONAS 1001 ZARUMILLA Atlántico 2305 INTERCUENCA 1002 TUMBES 2101 TIGRE DEL AMAZONAS 1003 BOCAPAN MARAÑON AMAZONAS 1004 CHIRA 2102 PASTAZA 2401 AGUAYTIA 1005 PIURA MARAÑON UCAYALI CASCAJAL 2103 MORONA 2402 PACHITEA 1006 OLMOS MARAÑON UCAYALI 1007 MOTUPE - LA 2104 SANTIAGO 2403 URUBAMBA LECHE - CHANCAY MARAÑON UCAYALI 1008 SAÑA 2105 NIEVA 2404 YAVERO 1009 MARAÑON UCAYALI JEQUETEPEQUE 2106 CENEPA 2405 PERENE 1010 CHICAMA MARAÑON UCAYALI 1011 MOCHE 2107 IMAZA 2406 TAMBO 1012 VIRU MARAÑON UCAYALI 1013 CHAO 2108 CHINCHIPE 2407 ENE UCAYALI 1014 SANTA MARAÑON 2408 MANTARO 1015 LACRAMARCA 2109 UTCUBAMBA UCAYALI 1016 NEPEÑA MARAÑON 2409 APURIMAC 1017 CASMA 2110 CHAMAYA UCAYALI 1018 CULEBRAS MARAÑON 2410 PAMPAS 1019 HUARMEY 2111 LLAUCANO UCAYALI 1020 FORTALEZA MARAÑON 2411 UCAYALI 1021 PATIVILCA 2112 CRISNEJAS UCAYALI 1022 SUPE MARAÑON 2501 YARUA 1023 HUAURA 2113 ALTO MADRE DE DIOS 1024 CHANCAYMARAÑON 2502 PURUS MADRE HUARAL MARAÑON DE DIOS 1025 CHILLON 2114 BAJO 2503 DE LAS 1026 RIMAC MARAÑON PIEDRAS MADRE DE 1027 LURIN MARAÑON DIOS 1028 CHILCA 2201 MAYO 2504 TAMBOPATA 1029 MALA HUALLAGA MADRE DE DIOS 1030 OMAS 2202 BIABO 2505 INAMBARI 1031 CAÑETE HUALLAGA MADRE DE DIOS 1032 TOPARA 2203 SISA 2506 ALTO MADRE 1033 SAN JUAN HUALLAGA DE DIOS MADRE DE 1034 PISCO 2204 SAPOSOA DIOS 1035 ICA HUALLAGA 2507 1036 GRANDE 2205 INTERCUENCAS 1037 ACARI HUALLABAMBA MADRE DE DIOS 1038 YAUCA HUALLAGA MADRE DE DIOS 1039 CHALA 2206 BAJO D.3 Cuencas Hidrográficas del 1040 CHAPARRA HUALLAGA Titicaca 1041 ATICO HUALLAGA 3001 HUANCANE 1042 CARAVELI 2207 ALTO 3002 RAMIS 1043 OCOÑA HUALLAGA 3003 CABANILLAS 1044 CAMANA HUALLAGA 3004 ILLPA 1045 QUILCA 2301 PUTUMAYO 3005 ILAVE 1046 TAMBO AMAZONAS 3006 ZAPATILLA 1047 ILO2302 NAPO 3007 CALLACAME MOQUEGUA AMAZONAS 3008 MAURE CHICO 1048 LOCUMBA 2303 NANAY 3009 MAURE 1049 SAMA AMAZONAS 5.- FISIOGRAFIA Por sus múltiples usos competitivos y por su gravitante incidencia tanto en la Economía como en la Ecología, el manejo del agua constituye el eje de todo proceso de desarrollo sostenido de las cuencas hidrográficas de la región. Este concepto debe considerar que una longitud corta del río de alta pendiente, tiene un efecto sobre el valor promedio de la pendiente que no está en proporción con su impacto sobre el tiempo recorrido. El río Sacramento o río de los Sacramentos (en inglés: Sacramento River) es el río más largo del estado de California, Estados Unidos. Se obtuvo información sobre los registros de temperatura de 3 estaciones climatológicas (Tejedores, Miraflores y San Miguel), todas con datos correspondientes a 15 años de registros desde 1972 hasta 1986. Este río mantiene su nombre hasta la localidad de Serrán; por su margen izquierda recibe el aporte del Chignia o San Martín. 40.68 0.42 1. Para realizar el análisis del régimen de los caudales del río Piura cuenta con una información actualizada correspondiente a 9 estaciones, de los cuales 4 pertenecen al río Piura y el resto a los afluentes principales como puede se puede apreciar en el CUADRO N° 1 . Las curvas hipsométricas de la cuenca y sub cuencas se pueden apreciar en los gráficos Nº 3, 4, 5 y 6. En el presente trabajo, para el cálculo de los caudales medios mensuales, no se ha considerado lógicamente los registros correspondientes a los mese extraordinarios de los años 1,972 y 1,983, pues de otro modo los resultados no serían aceptables ya que un valor extremo, estadísticamente, traería como consecuencia la variación de la media muy encima por encima de su valor real En los gráficos Nº33, 34, 35 Y 36 se presentan los Histogramas que representan las descargas medias mensuales, solo para las estaciones del río Piura que es el que nos interesa, los mismos que han sido elaborados a partir del mes de Noviembre, esto debido a que se ha tratada de buscar la adaptación a la distribución de tipo gaussiana a partir de la cual se pueden hacer muchas deducciones. En dicha información se observó que la temperatura media horaria mensual oscila entre 14.2 ºC y 34.6 ºC correspondiendo las mas altas naturalmente a los meses de verano; se observó también que la mínima horaria mensual estacionaria se registró en julio de 1970 y fue de 10.4 ºC, mientras que la máxima horaria mensual estacionaria fue de 36.8 ºC en enero y abril de 1970; ambos datos se observaron a 250 m.s.n.m. Desierto Desecado Premontano Tropical (dd - PT) 10.Desierto Perárido Premontano Tropical (dp – PT) 11.Bosque Húmedo Premontano Tropical (bh - PT) 12.Bosque Húmedo Montano Tropical (bh - MT) 13.Bosque Húmedo Montano (bh - MBT) 14.Bosque Seco Montano Bajo Tropical (bs - MBT) 15.Bosque muy Húmedo Montano Tropical (bmh - MT) 16.Monte Espinoso Tropical (mte - T) 17.Monte Espinoso Premontano Tropical (mte - PT) 4.- RECURSOS HIDRAULICOS El río Piura pertenece al sistema hidrográfico de la Gran Cuenca del Pacífico, tiene su origen a 3400 m.s.n.m. 0.62 24.6 3 0.33 50.6 9 0.77 25.5 1 0.37 70.1 2 0.35 68.0 4 0.49 40.9 6 0.58 39.8 1 0.52 30.5 9 0.49 55.8 1 0.49 53.8 7 0.32 70.9 4 0.38 60.8 5 0.49 48.0 5 0.44 35.2 3 0.41 52.5 8 0.32 53.1 6 1.31 90.0 2 0.43 58.9 5 St Lc Km. ALGODÓN ARROZ ARROZ MAIZ SORGO PASTOS FRUTALES HORTALIZAS OTROS SUB TOTAL: Has. Se define como toda forma de humedad que originándose en las nubes, llega hasta la superficie de la tierra, tanto baja la forma líquida como sólida: nieve, granizo, etc. ----------2.00 2.05 1.25 1.05 1.05 4.00 --1.50 ----2.20 2.30 ----1.70 ----1.20 --1.95 --0.45 ------- DISTANCIA ALTURA MINIMA (Km.) deben a este fenómeno. En el área costera o valle inferior hay formaciones vegetales propias como hongos y líquenes en las llanuras arenosas, y totorales en las cercanías de las riberas de los ríos principales. Los estudios hidrológicos permitirán el planeamiento del uso del agua, condicionando el dimensionamiento de las obras hidráulicas del sistema de su captación, almacenamiento, control y distribución; por otro lado será importante determinar por ejemplo las magnitudes máximas y las probables frecuencias de recurrencias de la precipitación y descargas, pues estas influirán en forma directa sobre el proyecto de obras hidráulicas donde el punto de vista de la prevención de catástrofes como las ocurridas en los años 1982 y 1983. PENDIENTE (S) --0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 ------0.4 ----0.4 0.4 --0.4 --0.4 ----0.4 0.4 0.4 0.4 --0.4 ----0.4 0.4 0.4 --0.4 --0.4 0.4 0.4 --0.1311 0.0792 0.4211 0.1000 0.4444 0.3333 0.5714 0.4444 ---------0.1026 ------0.2758 0.2222 ---0.1013 ---0.3200 ------0.3200 0.1702 0.6154 0.3077 ---0.2750 ------0.1509 0.1509 0.1212 ---0.1739 ---0.1067 0.5700 0.1600 117 118 119 120 3.50 2.90 3.00 4.75 INTERSECCIÓN 121 1.10 1.10 --2.90 1.20 1.20 2.50 2.50 CRITERIO DE NASH COORDENADAS DISTANCIA MINIMA X Y (Km.) --2.10 2.10 --4.25 4.25 1.60 1.40 1.40 3.50 --3.50 ------------------3.90 --3.90 6.40 --6.40 4.20 4.95 4.20 4.30 2.35 2.35 ------1.00 3.25 1.00 --1.50 1.50 2.80 1.25 1.25 1.00 3.00 1.00 1.70 4.30 1.70 4.20 --4.20 --------------------------1.90 1.90 --3.60 3.60 --2.00 2.00 --------1.20 1.20 ------1.15 6.20 1.15 ------------3.30 --3.30 --1.90 1.90 ------1.53 --1.53 --------5.30 5.30 6.45 --6.45 ------------- 0.4 0.4 --- 0.1860 0.1429 ---- ALTURA (Km.) 10295 Criterio de Alvord Este criterio analiza la pendiente de la cuenca partiendo al igual que el índice de pendiente, de la pendiente de cada una de las fajas definidas por curvas consecutivas. El índice de forma indica también la susceptibilidad de la cuenca a las inundaciones; una cuenca cuyo Kc es igual o se acerca a uno esta más propensa una inundación que una cuenca cuyo Kc es mayor que uno. 82.36 0.57 1. 139.76 NASH (m/Km.) Al igual que es importante conocer el valor de la lámina media anual de lluvia, por este método que es considerado el más preciso, también es importante tener un estimado del valor de la precipitación media mensual o lámina media mensual, que nos indican en forma más objetiva el comportamiento de la precipitación en un período mas corto de tiempo, especialmente en aquellos, meses donde se registran las mayores las precipitaciones, lo cual naturalmente tendrá una influencia 'directa sobre el aumento de los caudales de los ríos o cauces. en la divisoria con la cuenca del Río Huancabamba, y desciende con dirección noroeste atravesando parte de la provincia de Huancabamba y la provincia de Morropón hasta llegar a la localidad de Tambogrande, donde cambia de dirección hacia el oeste y luego hacia el sur, atravesando las provincias de Piura y Sechura en dirección a las lagunas Ramón y las Salinas. OCT. NOV. DIC. 0 4611.0 1980. Por ejemplo, para la prospección de los módulos pluviométricos medios en una cuenca de llanura extensa pero homogénea, el geógrafo podrá contentarse con una red bastante floja; en cambio el ingeniero que desee estudiar las crecidas consecutivas de costos pero intensos aguaceros en región montañosa, se verá en la obligación de multiplicar el número de pluviómetros. Manejo de datos hídricos (descargas, precipitaciones) para evaluar parámetros de diseño, para la construcción de obras de irrigación como presas, reservorios, canales, etc. N = Total de intersecciones con pendiente cero. LA ALTITUD ALTITUD AREA 0 499,10 0 100 200 219,60 12,5 44.00 400 107,31 25 21.5 800 61,14 50 12.25 1200 23,71 75 4.75 1600 0,00 100 0 CURVA HIPSOMETRICA DE LA CUENCA RIO SAN FRANCISCO 1800 1600 1400 1200 1000 800 600 400 200 0 ALTITUD (m.s.n.m.) Su medida correcta está muy lejos de ser tan simple como pudiera parecer a simple vista, y ello se debe a las razones siguientes:  Cualquiera que sea su tipo, el pluviómetro crea una perturbación aerodinámica en sus alrededores, produciéndose torbellinos que pueden aumentar o disminuir la entrada de agua al aparato. Sigue su recorrido de sur a norte. an, las precipitaciones promedio observadas en cada estación, el promedia será: a1 + a2 + a3 + ... + an n P= Con los valores de las precipitaciones promedio anual o Módulo Pluviométrico Medio mostrados en el CUADRO N°30 obtenemos luego de hacer los reemplazos respectivos: P = 520.7 mm. Una cuenca topográfica tiene su superficie perfectamente definida por su contorno desde la línea de división de las aguas hasta un punto convenido (Estación de aforos, desembocadura, etc. según se recomienda, (ver PLANO N°08) En el Plano mencionado anteriormente se puede observar que las mayores precipitaciones se presentan relativamente en las Estaciones de mayor altitud, esta se puede corroborar con afirmaciones sobre las cuales la precipitación aumenta con la altitud; pudiendo existir una dependencia entre ambas variables capaz de plasmarse en una ley teórica. PARCIALES (Km ) 3600 – 3200 14.57 2.24 3200 - 2800 50.04 7.70 2800 - 2400 54.43 8.37 2400 - 2000 68.61 10.55 2000 - 1600 49.68 7.64 1600 - 1200 71.21 10.95 1200 - 800 90.26 13.88 800 - 400 109.71 16.87 400 - 200 111.66 17.17 200 - 0.00 30.11 4.63 ALTITUD (m.s.n.m.) ÑÁCARA PTE. ESTACION TIPO LATITUD (S) LONGITUD (w) ALTITUD (M.S.N.M.) El río principal nace de la confluencia de las Quebradas Geraldo y Socha, desemboca en el río Piura cerca al poblado de Paccha. La materia del presente capítulo, es hacer una evaluación general de la información registrada, que permita elaborar recomendaciones necesarias respecto al funcionamiento de los sistemas actualmente empleados y ver la posibilidad si estos recursos hídricos, permiten la ampliación de su uso en otras áreas 6.- VEGETACION La vegetación natural que se halla en la cuenca del río Piura está en directa relación con la distribución de las aguas y los diferentes ambientes climáticos de la misma. 2. I.- INTRODUCCION ABR. El río Piura es muy irregular y caprichoso, por lo que ha recibido el nombre de "Río Loco". ESTACIÓN RÍO A QUE PERTENECE LATITUD (S) LONGITUD (W) ALTIUD (m.s.n.m.) AÑO TAMEOGRANDE MALACASI PTE. Correspondiente al mes de Abril, ha sido alcanzado o superado 14 veces en 14 años, o sea que en el 100X de los casos se ha tenido una descarga de 1.2m3:/seg. LA ALTITUD ALTITUD AREA 0 678,60 0,00 100.00 200 598,86 5,56 88,25 400 519,13 11,11 76,50 800 419,04 22,22 61,75 1200 305,37 33,33 45.00 1600 227,33 44,44 33,50 2000 144,20 55,56 21,25 2400 67,86 66,67 10.00 2800 27,14 77,78 4.00 3200 6,79 88,89 1.00 3600 0,00 100,00 0.00 CURVA HIPSOMETRICA DE LA CUENC RIO LA GALLEGA ALTITUD (m.s.n.m.) FEB. MAR. Autoridad Nacional del Agua | ANA web - Autoridad Nacional del Agua (ver cuadro A-5), en el mismo según el balance lógico Enero-Julio 87 (cuadro A-1) observamos que la disponibilidad de agua para cada mes rebasa el requerido, con lo cual se asegura la campaña del año. El proceso para determinar el área de la cuenca se realizó a través del planimetrado de las superficies encerradas por la divisoria de las aguas. En el caso de la estación de Tambo grande la descarga de 1.2 m3/seg. Bosque muy Seco Tropical (bms - T) 7. Al ámbito de esta Subcuenca se le ha integrado la quebrada el Cerezo. ABR. Esto es indispensable para la elaboración, ejecución y puesta en marcha de los planes de desarrollo. Este método el igual que el subsiguiente consideran la posibilidad que las precipitaciones varíen de una estación a otra forma importante y también que la distribución de las estaciones este lejos de ser-uniforme; así, se hace indispensable "pondear" las observaciones efectuadas en cada estación para obtener una media más correcta.. El Polígono se. 49.64 0.54 1. CURVAS DE NIVEL (m.s.n.m.) L= p ± 4 p2 −A 42 Reemplazando el valor del perímetro P en función de K C obtenemos las siguientes ecuaciones: K 2    A   1 + 1 − 1.128   K   C     Lado mayor: L =  1.C128  Lado menor: L’ =      2  K C A     1 − 1 − 1.128   K   1.128  C           Para el estudio de nuestra cuenca tendremos. TOTAL I.- AREA DECLARADA 994.0 ALGODÓN 27.5 ARROZ (A) ARROZ (T) MAIZ 446.0 SORGO PASTOS FRUTALES HORTALIZAS OTROS II.- AREA ESTIMADA A INSTALARSE 699.0 183.5 65.0 10.0 27.0 ALGODÓN ARROZ (T) MAIZ 498. CARACTERISTICAS DEL RIO PIURA El ro es el elemento receptor de todas las aguas que discurren una cuenca, y por lo tanto, el conocimiento de las caractersticas como el perfil longitudinal, pendiente, longitud y orden de los ros 2ramificacin9, nos va a determinar la posibilidad de su aprovechamiento a nivel de recursos hidroenergticos, y tambin a . Se calcula la pendiente de la cuenca en cada dirección de la malla según: SX = N X *D LX , SY = NY * D LY Donde: D = Equidistancia entre las curvas de nivel LX= Longitud total de las líneas de la malla en la dirección x. LY= Longitud total de las líneas de la malla en la dirección y. NX=Número total de intersecciones y tangencias en las líneas de las malla en la dirección x, con las curvas de nivel. Los datos existentes sobre descargas, corresponden a 4 estaciones hidrométricas en el río Piura y 6 estaciones hidrométricas en los ríos afluentes. El lector debe conocer algunas características hidrológicas y geomorfológicas que el río Piura presenta, que lo hacen muy particular respecto a otros ríos y que sirven para entender estos procesos en periodos de presencia del Fenómeno El Niño. PAITA 11-a SULLANA 10-b PIURA 11-b SECHURA 12-b LAS LOMAS 10-c CHULUCANAS 11-c LA REDONDA 12-c AYABACA 10-d MORROPON 11-d OLMOS 12-d HUANCABAMBA 11-e POMAHUACA 12-e Levantadas por Instituto Geográfico Nacional Lima- Perú por métodos fotogramétricos de fotografías aéreas. DE PRECIPITACIÓN (Iso-hietas) (m.m) ÁREA. REGIÓN AGRAGRIA OFICINA AGRARIA DISTRITO RIEGO CAMPAÑA AGRÍCOLA : : : : II PIURA. CURVAS DE NIVEL AREAS % AREA 2 (m.s.n.m.) Desde que el principal significado de las variaciones en la pendiente es el efecto que tiene el recorrido del agua, el método de medición de la pendiente más útil, es el de la pendiente uniforme que equivaldría al mismo tiempo de recorrido actual del cauce, la pendiente uniforme equivalente indicada puede obtenerse dividiendo la longitud del cauce entre un número determinado de tramos y calculando:    ∑ L' i S3 =  3  L' i 2  1  ( ∆h ) 2        2 Donde Li’ y ▲h son la longitud y diferencia de altitud de cualquier tramo. La unión del río Huarmaca con el Pusmalca y el Pata dan origen al río Canchaque, que recorre con dirección Nor – Oeste hasta la confluencia con el río Bigote El sistema Hidrográfico se encuentra formado por los siguientes ríos: Bigote.- Nace cerca de Pasapampa, a 3 350 m.s.n.m. (Km.) ANALISIS DE PRECIPITACIONES CAIDAS EN LA CUENCA El análisis de las precipitaciones, en una zona extensa cuya superficie puede variar de algunos kilómetros cuadrados a muchos kilómetros cuadrados, está obligatoriamente basado en las observaciones de lluvias efectuadas en cierto número de estacionas en la zona considerada. Se cuentan con 18 estaciones Pluviométricas distribuidas en toda el área de la cuenca en estudio, mas sietes estaciones que pertenecen a las cuencas vecinas pero ubicadas muy cercanamente a la cuenca del río Piura, lo cual nos ayudará en forma importante cuando haya calcular las precipitaciones promedio caídas en las misma. Cuenca Área (A) (Km2) Perímetro (P) (Km2) Kc Piura Bigote La Gallega San Francisco 10 295.00 650.34 678.80 499.10 589.75 121.25 116.75 107.25 1.64 1.34 1.26 1.35 2.- INDICE DE FORMA DE LA CUENCA (Kc) Una cuenca vertiente topográfica esta definida por su contorno, teniendo una cierta forma y encerrando un área. Address: Copyright © 2023 VSIP.INFO. SET. El Perú, es un país que posee relativamente escasos recursos hídricos, debido principalmente a su desigual disponibilidad en las diferentes épocas del año. Para la región se reporta 17, de las 84 zonas de vida reconocidas para el Perú, (según el Mapa Ecológico de la ONERN), distribuidas a su vez dentro de dos grandes espacios geográficos íntimamente relacionados: la llanura costera y el sistema de la Cordillera Occidental de los Andes. MAY. 0 MAR. Evaluar los parámetros necesarios que serán necesarios para optimizar las labores agrícolas en la zona del proyecto. Matorral Desértico Tropical (md - T) 2. P.C.R. Así, el intervalo de variación de un determinado mes como pudo observarse en algunas estaciones es, en valor relativo, más grande que el de la altura de lluvia anual. Subcuenca del río Bigote Es la de mayor extensión de la parte alta, comprende a los distritos de Canchaque, Lalaquíz, San Juan de Bigote, Yamango, Huancabamba y Salitral; el curso principal nace de la confluencia de las Quebradas Pache y Payaca, aguas abajo recibe los aportes de las Quebradas San Lorenzo por la margen derecha y Singocate por la margen izquierda. La medida de las pendientes de todas las intersecciones se considera como la pendiente de la cuenca. L = Longitud del curso principal, El factor de forma representa la mayor o menor tendencia a crecientes que tiene una cuenca, así un valor bajo de F nos indicará que esta estará sujeta a menores crecidas con respecto a otras cuencas del mismo tamaño pero con mayor factor de forma. Si se tiene que a1, a2, a3... + an, son las áreas comprendidas entre las curvas Isohietas r1, r2, r3 ..... + an * rn las precipitaciones correspondientes a cada Isohieta, la precipitación promedio será: a1 ( r0 + r1 ) / 2 + a 2 ( r1 + r2 ) / 2 + a3 ( r2 + r3 ) / 2 + a3 ( r2 + r3 ) / 2 + ... + a n ( rn −1 + rn ) / 2 A1 + A2 + A3 + .... + An P= CUADRO Nº 32 MÉTODO DE LAS LINEAS ISOHIETAS ALTURA. Saliendo de la laguna Lauricocha toma el nombre de río Marañón. La divisoria no debe cortar ningún cauce de agua, hasta el sitio que queremos estudiar la cuenca (estación de aforo, desembocadura, etc.) Río Sacramento (Estados Unidos) /  40.717501, -122.420228. km². ; la restante, estación de Sánchez Cerro es la que presenta un buen registro histórico apreciable (61 años) y fue instalada en SENAMHI. El río principal nace en las inmediaciones del Cerro Cachiris, tomando el nombre inicial de río de Frías, desemboca en el río Piura cerca de la ciudad de Chulucanas. 1034.70 SY = Sc = NY * D LY = 237 * 400 = 90.3m/Km. Felizmente bien hechas, los errores accidentales se compensan cuando sólo hay interés en los valores medios de una larga duración; además, ciertos errores sistemáticos se eliminan en muchos cálculos que conllevan la comparación de una con otra cuenca. 1500 1000 500 0 0 20 40 60 80 % DE AREA QUE QUEDA SOBRE LA ALTITUD (A=10295,01Km²) 1 ELEMENTOS PARA GRAFICAR LA CURVA HIPSOMÉTRICA DE LA CUENCA DEL RIO BIGOTE ALTITUD AREAS SOBRE % DE % DE (m.s.n.m.) Río Marañón: Se origina en los nevados próximos a Raura, en la laguna de Santa Ana. Si la cuenca estuviera sujeta a grandes crecidas, la capacidad de los cauces debe ser lo suficiente para captar y circular las aguas de escurrimiento, de lo contrario se producirán desbordes que para evitarlos se deben construir defensas ribereñas como enrocados, muros de contención, etc. El clima de la cuenca corresponde al de una zona Sub Tropical y al tipo de clima Semi Tropical Costero, caracterizado por pluviosidad moderada en años normales y altas temperatura con pequeñas oscilaciones estacionales. A.- MÉTODO DEL PROMEDIO ARITMÉTICO Es el método más simple, pero a menudo toscamente aproximado; consiste en admitir como altura media de las precipitaciones en el conjunto de la cuenca durante un período determinado, la media aritmética de las precipitaciones observadas al mismo tiempo en las distintas estaciones que existen en dicha .cuenca o en su vecindad inmediata. PALTASHACO LA GALLEGA 05º06”44” 79º53”20” 540.00 1972-1986 BARRIOS BIGOTE 05º17”00” 79º41”44” 298.00 1972-1986 TEODULO PEÑA CORRAL DEL MEDIO 05º11”06” 79º53”26” 193.00 1972-1986 SAN PEDRO CHARANAL 05º04”00” 80º00”30” 254.00 1972-1986 CUADRO Nº 02 1º parte ESTACIONES HIDROMÉTRICAS DE LA CUENCA DEL RÍO PIURA. Precipitaciones en Año normal, sin Fenómeno "El Niño" Precipitaciones durante los Fenómenos "El Niño" 1982-1983, 1997-1998 Medida de Precipitación La precipitación se mide en altura de agua, que es siempre definida por el espesor, contando según la vertical de la lámina de agua que se acumula en una superficie horizontal, si todas las precipitaciones recibidas por esta razón se inmovilizaran. A B L1 d1-2 ▲h1-2 1 L2 d2-3 ▲h2-3 2 L3 3 Se han considerado tres curvas de nivel (1,2,3) atribuyendo una faja de terreno entre dos de ellas, L1, L2 y L3, son las longitudes de cada curva desde la sección A hasta B. L’ será el promedio entre curvas consecutivas; d1-2 y d2-3 son las distancias horizontales medias de ambas fajas; h1-2 y h2-3 son los desniveles entre dos curvas consecutivas y a 1-2 y a2-3 las áreas correspondientes. con el 67.12% del área. Buenos Aires, Morropón, Chulucanas, Tambo Grande, Piura (capital del departamento del mismo nombre), Castilla, Catacaos, La Arena, La Unión, Vice, Bernal y Sechura. 0 L’= Li + L j 2 432.875 ▲h * L’ 86575 200 865.75 200 400 892.750 178550 817.250 163450 719.250 143850 668.500 133700 589.000 117800 511.800 102360 434.300 86860 382.375 76475 341.750 68350 319.375 63875 280.375 56075 280.875 44175 177.500 35500 146.625 29235 94.500 18900 36.750 7350 919.75 200 600 714.75 200 800 723.75 200 1000 613.25 200 1200 564.75 200 1400 458.85 200 1600 409.75 200 1800 355.00 200 2000 328.50 200 2200 310.25 200 2400 250.50 200 2600 191.25 200 2800 163.75 200 3000 129.50 200 3200 59.50 200 3400 14.00 Totales 7072.85 IP = 1413170 1413170 = 137.27m/Km. En una serie de observaciones, a medida que cada uno de los intervalos de tiempo (día, semana, mes, etc.) INTRODUCCIÖN La cuenca del río Piura está ubicada geográficamente cerca de la línea ecuatorial y comprendida entre los 4 o 40´y 5 o 40´de latitud sur y los 79º 30´y 81º 00´ de longitud oeste, abarcando un área de 10.229,64 km 2.El río Piura nace como río 2.- CLIMA La variación orográfica de esta Cuenca produce gran variación climática, desde el clima frío y seco en las alturas, cálido y seco en las quebradas superiores y medias hasta el cálido y algo húmedo en la planicie costera. Reemplazando los valores obtenidos del cuadro anterior obtendremos: 18.726 SC = 415 −333 = 228.81 m/Km. (Ver CUADRO N°07) Si a1, a2, a3,…, an son las áreas parciales de cada polígono y r1, r2, r3,… , rn, las precipitaciones correspondientes, el resultado final será: a1 .r1 + a2 .r2 + a3 .r3 + ... + an .rn a1 + a2 + a3 + .... + an P= Los cálculos aparecen en el cuadro N°31 CUADRO Nº- 30 SSTACTON PRECIPITACIÓN ANUAL ( X ) ( mm) PROMEDIO Huar Huar 1,253.7 Yuluce 1,160.0 Huarraaca 874.7 Pircas 1,340.8 Chalaco 888.8 Arrendamientos 547.1 Pasapampa 767.7 Huancabamba 474.2 Pirga 722.7 Canchaque 800.0 Paltashaco 607.5 Sto Domingo 898.6 Frias 1,002.5 Sapillica 593.0 Curban 233.2 Tablazo 89.5 Tejedores 146.8 San Miguel 34.6 Miraflores 39.7 Bigote 287.0 Virrey 138.7 Hallares 40.5 Bernal 27.2 La Esperanza 21.7 Chusis 23.5 CUADRO Nº 31 B. MÉTODO DEL POLIGONO DE THISSSEM ∑( ri x ai ) ∑ai P= Ri = Precipitación promedio anual de cada estación. 3. El parámetro Zi es igual al promedio de elevación sobre el punto de desagüe para cada extensión de largo. ri ( m m) área (km) (ai) (ri xai ) Chanchaque Bigote 800.10 286.90 573.43 660.91 458,801.34 189,615.08 Pasapampa Huar Huar Huancabamba Chalaco 767.70 . 5.4.1.- PRESENTACIÓN DE DATOS RELATIVOS A CAUDALES Los registros de caudales (descargas) efectuados durante un largo período (varios años) en una estación de aforo, forman un conjunto- importante de cifras y de gráficos que convienen analizar y clasificar, de acuerdo a métodos que faciliten su comprensión y utilización. en la cuenca media y alrededor de 1000 mm. 4. Km.  1.64 10295.01  1.128    1 − 1 −    = 40.44Km. 137.40 HORTON (m/Km.) 1.— Curva de Variación Mensual El hablar de caudales medios mensuales o anuales conduciría a una regularización artificial del régimen, por compensación de años secos y húmedos; de esto pueden resultar graves errores -por ejemplo al calcular la capacidad que e debe dar a los reservorios estacionales (cuando se trate de regularizar al curso de un río o de calcular la energía que debe producir una central hidro-eléctrica); por eso es necesario tener una idea de los caudales correspondientes a los años extremos (húmedos y secos) los cuales son extraídos a partir de los caudales totales anuales. 24.12 0.31 0. En la Costa aparece las cuencas Chira y Piura que cruzan el desierto costero como franjas relativamente estrechas, los ríos que llevan su mismo nombre son de corto recorrido y de carácter torrencial, nacen en las faldas accidentales de los Andes y después de discurrir por cauces generalmente estrechos y de pronunciadas pendientes, descargan en el Océano Pacífico. ENE. 1600 0 1200 4,85 800 7,44 400 Serie1 9,21 200 22,4 0 56,1 0 10 20 30 40 50 % DE SUPERFICIE DE LA CUENCA (A=499,1Km²) 60 5.- RECTANGULO EQUIVALENTE Se suele admitir que una cuenca se comporta de modo análogo a un rectángulo que tuviera la misma área y perímetro y por lo tanto, igual índice de compacidad e igual distribución de alturas. Limita por el Norte con la Cuenca del río Chira; por el Sur con el Desierto de Sechura; por el Este con la Cuenca del río Huancabamba y por el Oeste con el Océano Pacífico. En el valle superior existen áreas cubiertas mayormente por gramíneas como Ichu, Satipa; y especies propias de ambiente pantanoso como el género Sphagnun y otros. ), teniendo en cuenta que el drenaje se realiza por un sistema de cauces superficiales de agua que confluyen en uno principal que es el mas largo y que por lo general toma el nombre de la cuenca. PARCIALES (Km ) 3600 – 3200 1.70 0.25 3200 - 2800 24.63 3.63 2800 - 2400 40.99 6.04 2400 - 2000 78.17 11.52 2000 - 1600 82.38 12.14 1600 - 1200 78.92 11.63 1200 - 800 97.51 14.37 800 - 400 112.44 16.57 400 - 200 84.96 12.52 200 - 0.00 76.89 11.33 ALTITUD (m.s.n.m.) Áreas Parciales/l (Km.) • Cálculo de la pendiente S4: Para determinar esta medida se emplea la siguiente fórmula propuesta por BENSON (1959): S3 = Altura del 85% L − Altura del 10% L 75% L Donde L es el largo total del río. 5.4.1.1.- ANÁLISIS DE CONSISTENCIA DE LA INFORMACIÓN Para comprobar la bondad de la información, se realizó al igual que para el estudio de precipitaciones el procesa denominado de "Doble Masa" cuyos resultados según los GRÁFICOS N°30, 31 Y 32 evidencian que los datos pueden ser consideradas coma "consistentes". Conviene anotar sin embargo, que mientras la altura de lluvia caída determinada sía no tiene mucho que ver con la del día anterior o con la del día siguiente, las descargas de un río registradas durante varios días consecutivos, tienen carácter de continuidad y están estrictamente ligada. POLIGONO DE FRECUENCIAS ALTIMETR LA CUENCA DEL RIO PIURA 3600 0 0,02 0,13 0,57 0,5 0,6 0,82 1,13 1,18 1,45 1,66 2,02 2,15 2,67 2,68 3,47 4,71 7,13 3200 2800 2400 2000 1600 1200 800 400 0 0 6 20 40 60 % DE SUPERFICIE DE LA CUENCA (a=10295,01km²) Los parámetros para graficar el Polígono de Frecuencias de la Cuenca del río Bigote se encuentra en el siguiente cuadro. RELACION PORCENTUAL DE AREAS APROBADAS Y ESTIMADAS A INSTALARSE EN EL DISTRITO CAMPAÑA 1986 - 1987 1).- DECLARADO P.C.R. (Km.) AÑOS DE REGISTRO SANCHEZ CERRO PIURA 05º11”55” 80º37”20” 23.32 1926-1986 PTE. durante el mes de Abril en la estación de Tambo grande (Río Piura).

Periodo Inicial Desarrollo Político, Nike Blazer Mid '77 Vintage Hombre, Loreal Professionnel Liss Unlimited, Fecha De Facturación Ejemplo, Comunicación Audiovisual En Medios Digitales Cuánto Gana, Malas Condiciones De Los Establecimientos De Salud, Tipos De Tratamientos De Aguas Residuales, Trabajo Medio Tiempo Chaclacayo, Tipos De Investigación Libros,

características del río piura